AI Infrastructure

SIS: The Visual Dashboard That Makes Stephanie's AI Understandable

SIS: The Visual Dashboard That Makes Stephanie's AI Understandable

🔍 The Invisible AI Problem

How do you debug a system that generates thousands of database entries, hundreds of prompts, and dozens of knowledge artifacts for a single query?

SIS is our answer a visual dashboard that transforms Stephanie’s complex internal processes into something developers can actually understand and improve.

📰 In This Post

I

  • 🔎 See how Stephanie pipelines really work – from Arxiv search to cartridges, step by step.
  • 📜 View logs and pipeline steps clearly – no more digging through raw DB entries.
  • 📝 Generate dynamic reports from pipeline runs – structured outputs you can actually use.
  • 🤖 Use pipelines to train the system – showing how runs feed back into learning.
  • 🧩 Turn raw data into functional knowledge – cartridges, scores, and reasoning traces.
  • 🔄 Move from fixed pipelines toward self-learning – what it takes to make the system teach itself.
  • 🖥️ SIS isn’t just a pretty GUI - it’s the layer that makes Stephanie’s knowledge visible and usable.
  • 🈸️ Configuring Stephanie – We will show you how to get up and running with Stephanie.
  • 💡 What we learned – the big takeaway: knowledge without direction is just documentation.

❓ Why We Built SIS

When you’re developing a self-improving AI like Stephanie, the real challenge isn’t just running pipelines it’s making sense of the flood of logs, evaluations, and scores the system generates.

ZeroModel: Visual AI you can scrutinize

ZeroModel: Visual AI you can scrutinize

“The medium is the message.” Marshall McLuhan
We took him literally.

What if you could literally watch an AI think not through confusing graphs or logs, but by seeing its reasoning process, frame by frame? Right now, AI decisions are black boxes. When your medical device rejects a treatment, your security system flags a false positive, or your recommendation engine fails catastrophically you get no explanation, just a ’trust me’ from a $10M model. ZeroModel changes this forever.

Compiling Thought: Building a Prompt Compiler for Self-Improving AI

Compiling Thought: Building a Prompt Compiler for Self-Improving AI

How to design a pipeline that turns vague goals into smart prompts

🧪 Summary

Why spend hours engineering prompts when AI can optimize its own instructions. This blog post introduces a novel approach toward creating a self-improving AI by treating prompts as programs. Traditional AI systems often rely on static instructions rigid and limited in adaptability. Here, we present a different perspective: viewing the Large Language Model (LLM) as a prompt compiler capable of dynamically transforming raw instructions into optimized prompts through iterative cycles of decomposition, evaluation, and intelligent reassembly.