Agent Architectures: Chapter 2

This is a summary of the second chapter of a book I wrote:

Agent Architectures: Advanced Strategies for Intelligent LLM Systems

🤖 Chapter 2 : How to Think With AI Agents

Agents aren’t just tools they’re thinking partners. This post explores the core mindset shifts, methodologies, and feedback loops that define how to work with intelligent systems.


🌊 Five Core Shifts in the AI–Human Paradigm

Before diving into methods, we need to understand the big changes redefining how we work with AI:

Compiling Thought: Building a Prompt Compiler for Self-Improving AI

Compiling Thought: Building a Prompt Compiler for Self-Improving AI

How to design a pipeline that turns vague goals into smart prompts

🧪 Summary

Why spend hours engineering prompts when AI can optimize its own instructions. This blog post introduces a novel approach toward creating a self-improving AI by treating prompts as programs. Traditional AI systems often rely on static instructions rigid and limited in adaptability. Here, we present a different perspective: viewing the Large Language Model (LLM) as a prompt compiler capable of dynamically transforming raw instructions into optimized prompts through iterative cycles of decomposition, evaluation, and intelligent reassembly.

Agent Architectures: Chapter 1

This is a summary of the first chapter of a book I wrote:

Agent Architectures: Advanced Strategies for Intelligent LLM Systems

🚀 Introduction to LLM Agents

🤖 What is an LLM Agent?

An LLM agent is an intelligent software system built around a large language model (LLM). Unlike traditional LLMs, these agents don’t merely respond to prompts they actively reason, maintain context, and interact dynamically with external tools and environments. This autonomy enables them to manage complex workflows independently.

Thoughts of Algorithms

Thoughts of Algorithms

How a self-evolving AI learns to reflect, score, and rewrite its own reasoning

🧪 Summary

What if an AI could think not just solve problems, but reevaluate its beliefs in the face of new information?

In this post, we introduce a system that does exactly that. At the core of our pipeline is a lightweight scoring model called MR.Q, responsible for evaluating ideas and choosing the best ones. But when it encounters a new domain, a new goal, or a shift in task format, it doesn’t freeze it adapts.

Document Intelligence: Turning Documents into Structured Knowledge

Document Intelligence: Turning Documents into Structured Knowledge

📖 Summary

Imagine drowning in a sea of research papers, each holding a fragment of the knowledge you need for your next breakthrough. How does an AI system, striving for self-improvement, navigate this information overload to find precisely what it needs? This is the core challenge our Document Intelligence pipeline addresses, transforming chaotic documents into organized, searchable knowledge.

In this post we combine insights from Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers and Domain2Vec: Vectorizing Datasets to Find the Optimal Data Mixture without Training to build an AI document profiler that transforms unstructured papers into structured, searchable knowledge graphs.

Learning to Learn: A LATS-Based Framework for Self-Aware AI Pipelines

Learning to Learn: A LATS-Based Framework for Self-Aware AI Pipelines

📖 Summary

In this post, we introduce the LATSAgent, an implementation of LATS: Language Agent Tree Search Unifies Reasoning.. within the co_ai framework. Unlike prior agents that followed a single reasoning chain, this agent explores multiple reasoning paths in parallel, evaluates them using multidimensional scoring, and learns symbolic refinements over time. This is our most complete integration yet of search, simulation, scoring, and symbolic tuning bringing together all of our previous work on sharpening, pipeline reflection, and symbolic rules into a unified, intelligent reasoning loop.

Dimensions of Thought: A Smarter Way to Evaluate AI

Dimensions of Thought: A Smarter Way to Evaluate AI

📖 Summary

This post introduces a multidimensional reward modeling pipeline built on top of the CO_AI framework. It covers:

  • ✅ Structured Evaluation Setup How to define custom evaluation dimensions using YAML or database-backed rubrics.

  • 🧠 Automated Scoring with LLMs Using the ScoreEvaluator to produce structured, rationale-backed scores for each dimension.

  • 🧮 Embedding-Based Hypothesis Indexing Efficiently embedding hypotheses and comparing them for contrastive learning using similarity.

  • 🔄 Contrast Pair Generation Creating training pairs where one hypothesis outperforms another on a given dimension.

Programming Intelligence: Using Symbolic Rules to Steer and Evolve AI

Programming Intelligence: Using Symbolic Rules to Steer and Evolve AI

🧪 Summary

“What if AI systems could learn how to improve themselves not just at the level of weights or prompts, but at the level of strategy itself? In this post, we show how to build such a system, powered by symbolic rules and reflection.

The paper Symbolic Agents: Symbolic Learning Enables Self-Evolving Agents introduces a framework where symbolic rules guide, evaluate, and evolve agent behavior.

Adaptive Reasoning with ARM: Teaching AI the Right Way to Think

Adaptive Reasoning with ARM: Teaching AI the Right Way to Think

Summary

Chain-of-thought is powerful, but which chain? Short explanations work for easy tasks, long reflections help on hard ones, and code sometimes beats them both. What if your model could adaptively pick the best strategy, per task, and improve as it learns?

The Adaptive Reasoning Model (ARM) is a framework for teaching language models how to choose the right reasoning format direct answers, chain-of-thoughts, or code depending on the task. It works by evaluating responses, scoring them based on rarity, conciseness, and difficulty alignment, and then updating model behavior over time.

A Novel Approach to Autonomous Research: Implementing NOVELSEEK with Modular AI Agents

A Novel Approach to Autonomous Research: Implementing NOVELSEEK with Modular AI Agents

Summary

AI research tools today are often narrow: one generates summaries, another ranks models, a third suggests ideas. But real scientific discovery isn’t a single step—it’s a pipeline. It’s iterative, structured, and full of feedback loops.

In this post, I show how to build a modular AI system that mirrors this full research lifecycle. From initial idea generation to method planning, each phase is handled by a specialized agent working in concert.