HRM

The Space Between Models Has Holes: Mapping the AI Gap

The Space Between Models Has Holes: Mapping the AI Gap

🌌 Summary

What if the most valuable insights in AI evaluation aren’t in model agreements, but in systematic disagreements?

This post reveals that the “gap” between large and small reasoning models contains structured, measurable intelligence about how different architectures reason. We demonstrate how to transform model disagreements from a problem into a solution, using the space between models to make tiny networks behave more like their heavyweight counterparts.

We start by assembling a high-quality corpus (10k–50k conversation turns), score it with a local LLM to create targets, and train both HRM and Tiny models under identical conditions. Then we run fresh documents through both models, collecting not just final scores but rich auxiliary signals (uncertainty, consistency, OOD detection, etc.) and visualize what these signals reveal.

Case Based Reasoning: Teaching AI to Learn From itself

Case Based Reasoning: Teaching AI to Learn From itself

✨ Summary

Imagine an AI that gets smarter every time it works not by retraining on massive datasets, but by learning from its own reasoning and reflection, just like humans.

Most AI systems are frozen in time. Trained once, deployed forever, they never learn from mistakes or build on successes. Real intelligence human or artificial doesn’t work that way. It learns from experience.

This is the vision behind Stephanie: a self-improving AI that gets better every time it acts, not by fine-tuning, but by remembering, reusing, and revising its reasoning.